Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.
نویسندگان
چکیده
Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern.
منابع مشابه
Life history of a malaria parasite (Plasmodium mexicanum) in its host, the western fence lizard (Sceloporus occidentalis): host testosterone as a source of seasonal and among-host variation?
The course of infection of a malaria parasite (Plasmodium mexicanum) is highly variable in its host, the fence lizard (Sceloporus occidentalis). However, a seasonal trend is superimposed on this variation such that gametocyte production is intensified during mid- to late summer. Host testosterone levels follow a similar seasonal fluctuation and are variable among individual lizards. We sought t...
متن کاملClonal diversity of a malaria parasite, Plasmodium mexicanum, and its transmission success from its vertebrate-to-insect host.
Infections of the lizard malaria parasite Plasmodium mexicanum are often genetically complex within their fence lizard host (Sceloporus occidentalis) harbouring two or more clones of parasite. The role of clonal diversity in transmission success was studied for P. mexicanum by feeding its sandfly vectors (Lutzomyia vexator and Lutzomyia stewarti) on experimentally infected lizards. Experimental...
متن کاملClonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum.
Both verbal and mathematical models of parasite virulence predict that genetic diversity of microparasite infections will influence the level of costs suffered by the host. We tested this idea by manipulating the number of co-existing clones of Plasmodium mexicanum in its natural vertebrate host, the fence lizard Sceloporus occidentalis. We established replicate infections of P. mexicanum made ...
متن کاملExperimental test for premunition in a lizard malaria parasite (Plasmodium mexicanum).
Premunition in Plasmodium spp. is the prevention of superinfection by novel genotypes entering an already established infection in a vertebrate host. Evidence for premunition was sought for the lizard malaria parasite, P. mexicanum, in its natural host, the fence lizard, Sceloporus occidentalis. Clonal diversity (= alleles for the haploid parasite) was determined with the use of 3 microsatellit...
متن کاملLizard malaria: cost to vertebrate host's reproductive success
Plasmodium mexicanum is a common malarial parasite of the western fence lizard, Sceloporus occidentalis, in northern California, USA. Infected female lizards store substantially less fat during the summer activity season and produce smaller clutches of eggs than do non-infected animals. Stored fat is utilized in the production of eggs; the energy content of the decrement in stored fat is approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of parasitology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 2010